
SECOND-ORDER REFINEMENTS FOR t-RATIOS WITH MANY
INSTRUMENTS

YUKITOSHI MATSUSHITA AND TAISUKE OTSU

Abstract. This paper studies second-order properties of the many instruments robust t-ratios

based on the limited information maximum likelihood and Fuller estimators for instrumental

variable regression models under the many instruments asymptotics, where the number of in-

struments may increase proportionally with the sample size n, and proposes second-order refine-

ments to the t-ratios to improve the size and power properties. Based on asymptotic expansions

of the null and non-null distributions of the t-ratios derived under the many instruments asymp-

totics, we show that the second order terms of those expansions may have non-trivial impacts

on the size as well as the power properties. Furthermore, we propose adjusted t-ratios whose

approximation errors for the null rejection probabilities are of order O(n−1) in contrast to the

ones for the unadjusted t-ratios of order O(n−1/2), and show that these adjustments induce

some desirable power properties in terms of the local maximinity.

1. Introduction

Instrumental variable regression is one of the most widely used methods in empirical economic
analysis. Particularly in microeconometric applications, researchers often use many instrumental
variables to improve efficiency of estimators and associated inference methods (e.g., Angrist and
Krueger, 1991). However, in such cases, it has been found that approximate distributions of the
estimators and statistics based on the conventional asymptotic theory can be inaccurate. For
example, the two stage least squares (TSLS) estimator tends to have large bias. Although the
limited information maximum likelihood (LIML) estimator is less biased, its distribution is often
more dispersed than the limiting distribution based on the conventional asymptotics (see, e.g.,
Anderson, Kunitomo and Sawa, 1982, and Anderson, Kunitomo and Matsushita, 2010, 2011).

In order to give more accurate approximations under many instruments, Kunitomo (1980,
1982) and Morimune (1983) considered a limiting sequence where the number of instruments K
is allowed to increase proportionally with the sample size n (called the large-K asymptotics), and
derived the limiting distribution of the LIML estimator when the disturbances are normal and
there is one endogenous regressor in the regression model. Bekker (1994) derived multivariate
first-order approximations to the distributions of several estimators under the large-K asymp-
totics with the normal disturbances, while Hansen, Hausman and Newey (2008), van Hasselt
(2010), and Anderson, Kunitomo and Matsushita (2010) extended those results to non-normal
cases. Hansen, Hausman and Newey (2012) considered a more general model, where the reduced
form may be nonlinear and the disturbances may be heteroskedastic, and suggested to use the
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t-ratios for the LIML or Fuller (1977) estimators using the many instruments and heteroskedas-
ticity robust standard errors. It should be noted that existing works on the large-K asymptotics
mostly focus on the first-order asymptotic properties of the estimators and test statistics and
their higher-order properties are largely unexplored.1

This paper studies second-order properties of the t-ratios based on the LIML and Fuller esti-
mators for instrumental variable regression models under the large-K asymptotics, and proposes
higher-order refinements to the t-ratios to improve the size and power properties. To explore
the finite sample properties of the t-ratios with many instruments, asymptotic expansions of
the null and non-null distributions of the large-K robust t-ratios associated with the LIML and
Fuller estimators are derived under the large-K asymptotics. Moreover, to assess the effects of
variance estimation, we derive asymptotic expansions of the LIML and Fuller estimators under
the large-K asymptotics. Based on these asymptotic expansions, it is shown that the finite sam-
ple distributions of the large-K t-ratios can be quite different from those of the corresponding
standardized estimators although they have the same asymptotic normal distribution under the
large-K asymptotics. In fact, the absolute values of the second-order terms of the asymptotic
expansions of the standardized LIML and Fuller estimators and their large-K t-ratios are the
same but have opposite signs. Also the null distributions of the large-K t-ratios can be skewed
and largely deviated from the standard normal distribution. For two-sided testing, although
the second-order terms cancel out under the null distribution, we find that these second-order
terms may have non-trivial impacts on the power properties. Based on these expansions, we
propose adjusted t-ratios whose approximation errors for the null rejection probabilities are of
order O(n−1) in contrast to the ones for the unadjusted t-ratios of order O(n−1/2). Furthermore,
we show that these adjustments induce some desirable power properties in terms of the local
maximinity. Finally, these findings are illustrated by some simulation studies.

This paper also contributes to the literature of the asymptotic higher-order expansion ap-
proach, which has been developed extensively to investigate the finite sample properties of econo-
metric methods (see, e.g., Rothenberg, 1984, and Ullah, 2004, for an overview). For simultaneous
equation models, it has been used to give more accurate approximations to distributions of es-
timators and test statistics, or to compare their higher-order properties, see, Anderson (1974),
Sargan (1975), Phillips (1977), Rothenberg (1988), Fujikoshi et al. (1982), Morimune (1989), to
name a few. Our main contribution in this context is that, to the best of our knowledge, this is
the first paper which investigates higher-order properties of testing methods under the large-K
asymptotics.

The paper is organized as follows. In Section 2, we introduce our setup and estimators (Section
2.1) and define the the large-K robust t-ratios (Section 2.2). Section 3 presents our main results:
asymptotic expansions of the large-K t-ratios under the null hypothesis (Section 3.1), asymptotic
expansions under the local alternatives and adjusted t-ratios (Section 3.2), and a discussion for

1Exceptions are Kunitomo (1980) and Morimune (1983), which established asymptotic expansions for the dis-
tributions of the LIML and k-class estimators, respectively, for the case of the normal disturbances and one
endogenous regressor.
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the case of heteroskedastic and non-elliptically contoured disturbances (Section 3.3). Section 4
illustrates our findings by some simulation results.

2. Setup, estimators and test statistics

2.1. Setup and estimators. We first introduce our basic setup and some estimators. Consider
a single structural equation

y1 = Y2β + Z1γ + u, (1)

where y1 is an n-vector of dependent variables, Y2 is an n×G1 matrix of endogenous regressors,
Z1 is an n × K1 matrix of exogenous regressors, u is an n-vector of error terms, and β and γ

are G1 and K1 dimensional vectors of unknown parameters, respectively. We assume that (1) is
the first equation in a simultaneous system of G1 + 1 linear stochastic equations relating G1 + 1

endogenous variables Y = (y1, Y2), and K1 +K2 exogenous variables Z = (Z1, Z2), where Z2 is
an n ×K2 matrix of instrumental variables for (1). In this paper, we consider the case, where
Z is nonrandom (which may be viewed as conditioning on Z). Let K = K1 +K2. The reduced
form of Y is defined as

Y = ZΠ + V = (Z1, Z2)

(
Π1

Π2

)
+ (v1, V2), (2)

where Π1 = (π11,Π12) and Π2 = (π21,Π22) are K1 × (1 + G1) and K2 × (1 + G1) matrices,
respectively, of the reduced form coefficients, and (v1, V2) is an n×(1+G1) matrix of disturbances.
We assume that the rows of V are independently distributed, and each row of V has mean 0

and nonsingular covariance matrix Ω =

(
ω11 ω12

ω21 Ω22

)
. In order to relate (1) and (2), we

postmultiply (2) by (1,−β′)′. Then it can be written as u = v1 − V2β, γ = π11 − Π12β, and
π21 = Π22β. Assume that the matrix Π22 is of rank G1. The components of u are independently
distributed with mean 0 and variance σ2 = ω11− 2β′ω21 + β′Ω22β. We mainly focus on the case
where the error term u is homoskedastic, and discuss heteroskedastic errors in Section 3.3.

Let PF = F (F ′F )−1F ′ and MF = I − PF for a full column rank matrix F . The k-class
estimator is defined as(

β̂k

γ̂k

)
=

[
Y ′2Y2 − kY ′2MZY2 Y ′2Z1

Z ′1Y2 Z ′1Z1

]−1(
Y ′2(I − kMZ)y1

Z ′1y1

)
. (3)

This estimator covers (i) OLS (k = 0), (ii) TSLS (k = 1), (iii) LIML (k = λ̂), and (iv) Fuller
(1977) (k = λ̂− a/(n−K) for some a > 0) as special cases, where λ̂ is the smallest root of∣∣∣∣∣

(
Y ′

Z ′1

)
PZ(Y, Z1)− λ

(
Y ′

Z ′1

)
MZ(Y,Z1)

∣∣∣∣∣ = 0.

Under the conventional asymptotics, where the number of instruments K is fixed, both the
LIML and TSLS estimators are consistent and follow the same limiting normal distribution.
However, it has been known that the exact distributions of these estimators can be quite different
from the normal distribution. When K is large, the TSLS estimator can be severely biased
(see, e.g., Anderson, Kunitomo and Matsushita, 2010). On the other hand, the distribution
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of the LIML estimator is more dispersed than the limiting distribution under the conventional
asymptotics. The Fuller estimator has moments of all orders, and is known to have good finite
sample properties in some situations (e.g., Hahn, Hausman and Kuersteiner, 2004, and Hansen,
Hausman and Newey, 2008).

Bekker (1994) pointed out that the large-K asymptotic theory, where K may grow propor-
tionally to n, may be suited better to applications, even when the number of instruments is not
large. Under the large-K asymptotics, the (first-order) asymptotic distributions of the LIML
and TSLS estimators are rather different. The LIML estimator is consistent and asymptotically
normal while the TSLS estimator loses consistency. Also the LIML estimator attains the asymp-
totic efficiency bound when the number of instruments is large (see, Kunitomo, 1982, Chioda
and Jansson, 2009, and Anderson, Kunitomo and Matsushita, 2010).

In constrast, this paper is concerned with higher-order properties of the t-ratios for testing
parameter hypotheses under the large-K asymptotics, which will be introduced in the next
subsection.

2.2. Many instruments robust t-statistics. Let ι be a (G1 +K1)-vector of zeros, apart from
its j-th element which is unity. We are interested in testing the null hypothesis

H0 : ι′

(
β

γ

)
= 0,

i.e., the j-th coefficient in (1) is zero, against the one-sided or two-sided alternative hypothesis.

Let D2 =

(
Π12 IK1

Π22 0

)
. Throughout the paper, we assume

1

n
D′2Z

′ZD2 = Q+O(n−1) for some positive definite Q, (4)

and K = Kn satisfies
K

n
= c+O(n−1) for some c ∈ [0, 1). (5)

Note that the number of instruments K can grow at either the same rate (c > 0) as the sample
size or at slower rate (c = 0), where the latter includes the conventional fixed-K asymptotics as
a special case.

Under the sequence (5) and certain regularity conditions, the results in Anderson, Kunitomo
and Matsushita (2010) can be adapted to derive the limiting distributions of the LIML estimator
(β̂′LI , γ̂

′
LI)
′ and Fuller estimator (β̂′F , γ̂

′
F )′ as

√
n

(
β̂LI − β
γ̂LI − γ

)
d→ N(0,Ψ∗),

√
n

(
β̂F − β
γ̂F − γ

)
d→ N(0,Ψ∗),

where

Ψ∗ = σ2Q−1 +
c

1− c
Q−1

[(
Ω22σ

2 0

0 0

)
− q2q

′
2σ

4

]
Q−1 +Q−1[(Ξ3 + Ξ′3) + ηΞ4]Q−1. (6)
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For Ψ∗, we use the following notation

q2 =
1

σ2
(ω′21 − β′Ω22, 0

′)′, Ξ3 =
1

1− c
lim
n→∞

D′2
1

n

n∑
i=1

zi(pii − c)E[u2
iw
′
2i],

η =
1

(1− c)2
lim
n→∞

1

n

n∑
i=1

(pii − c)2, Ξ4 = E[u2
iw2iw

′
2i]− σ2E[w2iw

′
2i],

where w2i = (v′2i, 0
′)′ − uiq2 and pii = z′i(Z

′Z)−1zi. Compared to the conventional variance
formula σ2Q−1, there are two additional terms in Ψ∗ due to the large-K asymptotics, which
vanish when the number of instruments grows at a slower rate (i.e., c = 0).

The focus of this paper is to investigate higher-order properties of the t-tests for H0 under
the large-K asymptotics (5). To this end, we introduce an additional assumption, which greatly
simplifies our higher-order analysis in the following section. Let EC(Ω) be the class of ellipti-
cally contoured distributions.2 This class contains many important distributions including the
multivariate normal and t distributions and the uniform distribution on the sphere. Hereafter,
we assume

the distribution of the rows of V belongs to EC(Ω). (7)

Under (7), the asymptotic variance Ψ∗ simplifies to (see, Anderson, Kunitomo and Matsushita,
2010)

Ψ = σ2Q−1 +

(
c

1− c
+ ηκ

)
Q−1

[(
Ω22σ

2 0

0 0

)
− q2q

′
2σ

4

]
Q−1, (8)

where κ = (E[u4
i ]/σ

4−3)/3. Note that Ψ is identical to Bekker’s (1994) variance when the error
terms are normally distributed. By taking the sample counterparts, a consistent estimator of Ψ

is given by

Ψ̂ = σ̂2Q̂−1

+

(
K

n−K
+ η̂κ̂

)
Q̂−1

(
1

n−KY
′

2MZY2σ̂
2 − 1

(n−K)2
Y ′2MZY b̂b̂

′Y ′MZY2 0

0 0

)
Q̂−1, (9)

where

σ̂2 =
1

n−K
b̂′Y ′MZY b̂, b̂ = (1,−β̂′)′, Q̂ =

1

n

(
Y ′2PZY2 − λY ′2MZY2 Y ′2Z1

Z ′1Y2 Z ′1Z1

)
,

η̂ =

(
n

n−K

)2 1

n

n∑
i=1

(
pii −

K

n

)2

, κ̂ =
1

3

{
1

σ̂4

1

n

n∑
i=1

(y1i − y′2iβ̂ − z′1iγ̂)4 − 3

}
,

and (β̂, γ̂, λ) = (β̂LI , γ̂LI , λ̂) for the LIML estimator, or (β̂F , γ̂F , λ̂ − a/(n − k)) for the Fuller
estimator.

Based on this variance estimator, the large-K t-ratio for testing H0 is given by

tK =
1√
Ψ̂j

ι′
√
n

(
β̂

γ̂

)
, (10)

2If the characteristic function of a random vector X has the form of φ(
∑n

i=1 t
′Ωt) for some function φ(·) and

positive definite Ω, then we say that X is distributed according to an elliptically contoured distribution. See
Anderson (2003, Section 2.7).
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where Ψ̂j is the j-th diagonal element of Ψ̂. In the next section, we study higher order properties
of the t-test based on this statistic under the large-K asymptotics.

3. Main results

3.1. Asymptotic expansions under null hypothesis. Let tLIK and tFK be the large-K t-
ratios defined in (10) based on the LIML and Fuller estimators, respectively. We first present
asymptotic expansions of the null distributions of these t-ratios under the large-K asymptotics
in (5). Let Φ(·) and φ(·) be the standard normal distribution and density functions, respectively,
and Ψj be the j-th diagonal element of Ψ.

Theorem 1. Consider the setup of Section 2. Suppose that (4) and (7) hold true, and the rows
of V have finite 8th moments. Then the asymptotic expansions of the null distributions of the
large-K t-ratios tLIK and tFK under the large-K asymptotics (5) are given by

P{tLIK ≤ τ} = Φ(τ)− 1√
n

1√
Ψj

τ2(ι′Ψq2)φ(τ) +O(n−1),

P{tFK ≤ τ} = Φ(τ)− 1√
n

1√
Ψj

[
τ2ι′Ψ +

a

1− c
σ2ι′Q−1

]
q2φ(τ) +O(n−1),

for each τ ∈ R, respectively.

This theorem says that (i) the approximation errors in rejection probability of both tests are
of order O(n−1/2), (ii) the approximation errors become larger as the degree of endogeneity
q2 = E[v2iui]/σ

2 increases, and (iii) the approximation error of tFK is not always smaller than
that of tLIK . In particular, if the number of endogenous regressors is one (i.e., G1 = 1), the
absolute value of the second term of tFK is always larger than that of tLIK unless q2 = 0. The
last point implies that improvement of the Fuller estimator over the LIML estimator does not
necessarily imply improvement of the size property of the t-test under the large-K asymptotics.

It should be noted that the finite sample distributions of the t-ratios and corresponding esti-
mators may be different due to estimation of the asymptotic variances in the denominators of
t-ratios. In fact, we can derive the asymptotic expansions of the distributions of the LIML and
Fuller estimators as follows. Let fLI and fF be the density functions of

√
n((β̂LI−β)′, (γ̂LI−γ)′)′

and
√
n((β̂F − β)′, (γ̂F − γ)′)′, respectively, and φΨ be the density function of N(0,Ψ).

Theorem 2. Consider the setup of Section 2. Suppose that the assumptions in Theorem 1 hold
true. The asymptotic expansions of fLI and fF under the large-K asymptotics (5) are given by

fLI(ξ) = φΨ(ξ)

{
1 +

1√
n

(q′2ξ)(G1 +K1 + 1− ξ′Ψξ)
}

+O(n−1),

fF (ξ) = φΨ(ξ)

{
1 +

1√
n

[
(q′2ξ)(G1 +K1 + 1− ξ′Ψξ) +

a

1− c
q′2σ

2Q−1Ψξ

]}
+O(n−1),

for each ξ ∈ RG1+K1 , respectively.

We note that the expansion for the LIML estimator is derived based on Fujikoshi et al. (1982),
but the expansion for the Fuller estimator is new in the literature. Based on Theorem 2, we can
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see that under H0,

P

{
1√
Ψj

ι′
√
n

(
β̂LI

γ̂LI

)
≤ τ

}
= Φ(τ) +

1√
n

1√
Ψj

τ2(ι′Ψq2)φ(τ) +O(n−1),

P

{
1√
Ψj

ι′
√
n

(
β̂F

γ̂F

)
≤ τ

}
= Φ(τ) +

1√
n

1√
Ψj

[
τ2ι′Ψ +

a

1− c
σ2ι′Q−1

]
q2φ(τ) +O(n−1),

for each τ ∈ R. Comparing with Theorem 1, we can see that the distributions of the LIML and
Fuller estimators and large-K t-ratio are distorted in opposite directions.3

3.2. Asymptotic expansions under local alternative hypothesis and adjusted t-ratios.
In order to investigate power properties of the large-K t-ratios, we now derive asymptotic ex-
pansions of their distributions under the local alternative hypothesis:

H1n : ι′

(
β

γ

)
=

1√
n
ι′ζ,

for some ζ ∈ RG1+K1 . Let Φ−ζ (τ) = 1− {Φζ(τ)−Φζ(−τ)}, where Φζ and φζ are the cumulative

distribution and density functions of N(Ψ
−1/2
j ι′ζ, 1), respectively.

Theorem 3. Consider the setup of Section 2. Suppose that the assumptions in Theorem 1 hold
true. Then asymptotic expansions of the power functions of the one-sided and two-sided large-K
t-tests under H1n are given by

P{tK ≥ τ} = 1− Φζ(τ)

+
1√
n

1√
Ψj

[
(ι′Ψq2){τ2 − (ι′ζ/

√
Ψj)

2}+
aσ2

1− c
ι′Q−1q2

]
φζ(τ) +O(n−1),

P{|tK | ≥ τ} = Φ−ζ (τ)

+
1√
n

1√
Ψj

[
(ι′Ψq2){τ2 − (ι′ζ/

√
Ψj)

2}+
aσ2

1− c
ι′Q−1q2

]
{φζ(τ)− φζ(−τ)}+O(n−1),

for each τ ∈ R, respectively. Here a = 0 for tLIK and a > 0 for tFK .

This theorem says that the large-K t-tests are locally biased up to the order O(n−1/2) unless
the degree of endogeneity q2 is zero because ∂

∂ζP{tK ≥ τ} = O(n−1/2) and ∂
∂ζP{|tK | ≥ τ} =

O(n−1/2) unless q2 = 0 (Rao, 1973, pp.454).
Based on the asymptotic expansions in Theorems 1 and 3, we propose a simple adjustment

to the t-ratio, which does not include the term of order O(n−1/2) in the expansion of the null
distribution:

tadjK = tK −
1√
n

1√
Ψ̂j

{
(ι′Ψ̂q̂2) min{t2K , nε}+

an

n−K
σ̂2ι′Q̂−1q̂2

}
, (11)

3Bekker (1994) provided a skewed approximation for the distribution of the LIML estimator, not its t-ratio.
Because the directions of the skewness of the distributions of the LIML estimator and the t-ratio under the null
are opposite, Bekker’s skewed approximation might make the size property of the test even worse.
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for some ε ∈ (0, 1/2). The trimming term, nε, has no impact on the second-order properties under
the null and local alternative hypotheses. This term is introduced to guarantee consistency of
the t-test based on tadjK under fixed alternatives. In our simulation study below, we set as ε = 0.1.

The asymptotic expansion of the null distribution of the adjusted statistic is obtained as
follows.

Theorem 4. Consider the setup of Section 2. Suppose that the assumptions in Theorem 1 hold
true. Then the asymptotic expansion of the null distribution of the adjusted t-ratio (11) under
the large-K asymptotics (5) is given by

P{tadjK ≤ τ} = Φ(τ) +O(n−1),

for each τ ∈ R.

This theorem says that (i) the approximation error in rejection probability of the one-sided
test using the adjusted t-ratio tadjK is of order O(n−1), which improves the (unadjusted) large-K
t-test whose error is O(n−1/2), and (ii) the two-sided test with the adjusted t-ratio have the
approximation error O(n−1), which is the same as that of the (unadjusted) large-K t-test.

Next we present the local power properties of the adjusted t-tests.

Theorem 5. Under the same assumption in Theorem 1, the asymptotic expansions of the power
functions of the one-sided and two-sided adjusted t-tests under H1n are given by

P{tadjK ≥ τ} = 1− Φζ(τ) +
1√
n

− 1√
Ψj

(ι′Ψq2)

(
ι′ζ√
Ψj

)2
φζ(τ) +O(n−1),

P{|tadjK | ≥ τ} = Φ−ζ (τ) +
1√
n

− 1√
Ψj

(ι′Ψq2)

(
ι′ζ√
Ψj

)2
 {φζ(τ)− φζ(−τ)}+O(n−1),

for each τ ∈ R, respectively.

Note that the adjusted t-tests do not dominate the unadjusted t-tests in terms of the second-
order power uniformly in ζ. However, the two-sided adjusted t-test has some desirable power
property with regard to the second-order local maximinity, i.e., it is more powerful on the basis of
the minimum power attainable for alternatives within a given distance from the null hypothesis
(see, e.g., Mukerjee, 1994). To be precise, let P1(τ, ζ) and P adj1 (τ, ζ) be the terms of order
O(n−1/2) in the local power functions of the two-sided tests in Theorems 3 and 5, respectively.
We obtain the following result.

Corollary 1. Under the same assumption in Theorem 1 and H1n, it holds

min
ζ∈RG1+K1 :(ι′ζ)2=δ

P adj1 (τ, ζ) ≥ min
ζ∈RG1+K1 :(ι′ζ)2=δ

P1(τ, ζ),

for each δ > 0.

3.3. Discussion: Heteroskedastic and non-elliptically contoured distributions. This
paper should be considered as a starting point toward more general higher-order theory for
inference on instrumental variable regression models. In particular, it is interesting to extend
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our analysis for the case of heteroskedastic and/or non-elliptically contoured error terms. It
should be noted that the LIML and Fuller estimators can be inconsistent with many instruments
and heteroskedasticity of unknown form (see, e.g., Hausman et al., 2012). Hausman et al.
(2012) proposed heteroskedasticity and many instrument robust versions of the LIML and Fuller
estimators, and t-tests based on their asymptotic variance estimators.

Let

tHLIK =
1√
Ψ̂H,j

ι′
√
n

(
β̂HLI

γ̂HLI

)
,

be the t-ratio for testing H0 based on the heteroskedasticity robust LIML (HLIM) estimator
(β̂′HLI , γ̂

′
HLI)

′ and its variance estimator Ψ̂H defined in p. 217 and p. 215 of Hausman et al.
(2012), respectively. The higher-order analyses are very different and more complicated not only
for the HLIM estimator but also for the variance estimator. Thus, we leave such analysis for
future research. However, motivated by the adjustment term in (11), we consider the following
statistic in the simulation study in the next section

tHadjK = tHLIK − 1√
n

1√
Ψ̂j

(ι′Ψ̂q̂2) min{t2K , nε}.

Since the second term is asymptotically negligible in the first-order, the t-ratio tHadjK is still
asymptotically valid. Although the second-order properties of tHadjK is unknown, we expect that
the above adjustment term might improve the finite sample performances of the t-test as far as
the effects of heteroskedasticity and non-elliptically contoured errors are mild.

4. Simulation

In this section, we conduct a simulation study to examine quality of the preceding asymptotic
approximations to the finite sample distributions of the t-ratios. We consider the data generating
process (DGP):

y1i = y2iβ0 + z1iγ0 + ui,

y2i = z′iπ2 + v2i, (12)

for i = 1, . . . , n, where π = (d, . . . , d)′, zi = (z1i, z
′
2i)
′, z1i = 1, and z2i ∼ N(0, IK−1). The error

terms are generated as (ui, v2i) = (ε1i, ρε1i +
√

1− ρ2ε2i), where ε1i and ε2i are independent and
drawn from N(0, 1).4 We set β0 = γ0 = 0, ρ = 0.2, 0.4, and n = 100 for the sample size in all
cases. For each Monte Carlo replication, we set the value of d to fix the value of the concentration
parameter (given the realized values of {zi})

δ2 =
π′2

[∑n
i=1 z2iz

′
2i −

∑n
i=1 z2iz

′
1i (
∑n

i=1 z1iz
′
1i)
−1∑n

i=1 z1iz
′
2i

]
π2

V ar(v2i)
.

Null distributions of t-ratios for β0. First, we investigate the null distributions of the five types

of t-ratios – the standard t-ratio with the LIML estimator (tLI =
√
nι′β̂LI/

√
σ̂2(Q̂−1)j), the

4In our preliminary simulation, we also consider the t5 distribution as another example of the elliptically contoured
distribution, but the results are similar to the normal case.
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large-K t-ratio with the LIML estimator (tLIK ), the large-K t-ratio with the Fuller estimator
(tFK), the adjusted large-K t-ratio with the LIML estimator (tadj,LIK ), and the adjusted large-K
t-ratio with Fuller estimator (tadj,FK ). For the adjusted statistics, we set as ε = 0.1. The number
of Monte Carlo repetitions in each experiment is 10,000.

Tables 1 and 2 report the null rejection frequencies of the one-sided and two-sided tests at the
nominal 5% significance level, respectively. Our findings are summarized as follows.

i): The size distortions of the standard t-ratio (tLI) tend to be large when δ2 is small and
K is large. As K increases, the tails of tLI become thicker and its rejection frequencies
tend to be larger than the nominal level.

ii): Compared to tLI , the rejection frequencies of the large-K t-ratios (tLIK and tFK) are
smaller and avoid over-rejection. Although tLIK and tFK work well for two-sided testing,
they show some asymmetric behaviors for one-sided testing. More precisely, tLIK and tFK
(sometimes severely) under-reject for one-sided testing against H1 : β < 0. Overall tLIK
and tFK show similar performances, but tLIK is slightly better than tFK for testing against
H1 : β < 0.

iii): Compared to tLI and the (unadjusted) large-K t-ratios (tLIK and tFK), the proposed
adjusted t-ratios (tadj,LIK and tadj,FK ) work well for all cases. Their rejection frequencies
are overall close to the nominal level, and do not show undesirable asymmetries for one-
sided testing as in the unadjusted test statistics tLIK and tFK . The performances of tadj,LIK

and tadj,FK are similar.

Overall, the adjusted ratios, tadj,LIK and tadj,FK , perform well for all cases. In particular, the
adjustments improve the size distortions for one-sided testing because the null distributions of
the adjusted t-ratios are less skewed and closer to the standard normal distribution, which agrees
with our results of the asymptotic expansions in Section 2.

Power comparison. Next, we conduct power comparisons of the two-sided unadjusted and ad-
justed large-K t-tests. We generate 2,000 datasets from the DGP in (12) for various values
of β and report power curves at 5% significance level. Figures 1-2 display the power curves.
Among various cases tried in preliminary simulations, we present the cases of δ2 = 16 as typical
examples. From these figures, we can see that: (i) for negative values of β, the adjusted large-K
t-tests (tadj,LIK and tadj,FK ) are more powerful than the (unadjusted) large-K t-tests, and (ii) for
positive values of β, all tests show similar power properties.

Heteroskedastic errors. Finally, we study finite sample performances of the heteroskedastic ver-
sions of the large-K t-ratios discussed in Section 3.3. In particular, we consider heteroskedastic
error terms with uHi = (1 + 0.01z∗22i )ui, where z∗2i is the first element of z2i, and report only
for the case of ρ = 0.4 for brevity in Tables 3 and 4. We can see that the null distributions
of the adjusted t-ratios reduce the skewness (asymmetries in the rejection frequencies for the
positive and negative alternatives) and are closer to the standard normal distribution. Also our
preliminary simulation suggests that the power curves are similar to the case of homoskedastic
errors.
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Appendix A. Proofs

A.1. Proof of Theorem 2. Let

ê =

{ √
n((β̂LI − β)′, (γ̂LI − γ)′) if λ = λ̂,
√
n((β̂F − β)′, (γ̂F − γ)′) if λ = λ̂− a/(n−K).

By the definitions of the LIML and Fuller estimators in (3), we have

(Y,Z1)′(PZ − λMZ)(Y2, Z1)ê =
√
n(Y, Z1)′(PZ − λMZ)(Y, Z1)

 1

−β
−γ

 . (13)

Using the definition,

D = (D1, D2) =

((
π11

π21

)
,

(
Π12 IK1

Π22 0

))
,

it can be written as

(Y, Z1)′(PZ − λMZ)(Y, Z1)

= {ZD + (V, 0)}′(PZ − λMZ){ZD + (V, 0)}

= D′Z ′ZD +D′Z ′(V, 0) + (V, 0)′ZD + (V, 0)′(PZ − λMZ)(V, 0). (14)

Also we note that
√
K(V ′PZV/K − Ω) = Op(1), and

√
n−K(V ′MZV/(n −K) − Ω) = Op(1).

By substituting (14) into (13) and putting

ê = e(0) +
1√
n
e(1) +Op(n

−1),

λ̂ = λ(0) +
1√
n
λ(1) +Op(n

−1),

we can determine successively (e(0), e(1)) and (λ(0), λ(1)) as

λ(0) = c∗, λ(1) =
c∗
σ2

[√
n

K
u′PZu−

√
n

n−K
u′MZu

]
,

e(0) = Q−1

[
1√
n
D′2Z

′u+

√
c√
K
W ′2PZu−

√
cc∗√

n−K
W ′2MZu

]
, (15)

e(1) = −Q−1

[{
1√
n
D′2Z

′(V2, 0) +

√
c√
K
W ′2PZ(V2, 0)−

√
cc∗√

n−K
W ′2MZ(V2, 0)

}
e(0)

+
1√
n
W ′2ZD2e

(0) − (1− c)λ(1)

{(
Ω22 0

0 0

)
− q2q

′
2σ

2

}
e(0)

+
√

1− cλ(1) 1√
n−K

W ′2MZu

]
+ a(1 + c∗)σ

2Q−1q2,

where W2 = (V2, 0) − uq′2, q2 = 1
σ2 (ω′21 − β′Ω22, 0

′)′, and c∗ = c/(1 − c). Each λ(l) is obtained
by premultiplying (1,−β′,−γ′) to (13). Each e(l) is obtained by using the last G1 +K1 rows of
(13).

It should be noted that W2 and u are uncorrelated when the rows of V are independently
distributed. Moreover, we notice that E[w2iw

′
2iw2iui] = 0 and E[w2iw

′
2iw2iu

3
i ] = 0 when W2

11



and u follow some elliptically contoured distribution. Using these facts, the Cornish-Fisher
expansions of 1√

n
D′2Z

′u, 1√
K
W ′2PZu, and

1√
n−KW

′
2MZu may be written as

1√
n
D′2Z

′u = X +Op(n
−1),

1√
K
W ′2PZu = Y +Op(n

−1),

1√
n−K

W ′2MZu = Z +Op(n
−1),

where X , Y, and Z are some normally distributed random vectors. Thus, ê can be written as

ê = E +
1√
n
e(1) +Op(n

−1), (16)

where E = Q−1(X +
√
cY +

√
cc∗Z).

We derive an asymptotic expansion of the distribution of ê by inverting the characteristic
function of ê up to order n−1/2:

E[exp(is′E)] +
1√
n
E[is′E[e(1)|E ] exp(is′E)] +O(n−1), (17)

where s is a (G1 +K1)× 1 vector of real variables and i =
√
−1. The conditional expectation of

e(1) given the first order term E can be written as

E[e(1)|E ] = −{EE ′ − a(1 + c∗)Q
−1σ2}q2 +Op(n

−1/2).

Therefore, the probability P (ê ≤ ξ) is approximated to the order n−1/2 by the Fourier inversion
of the characteristic function (17). The inversion of the first term is ΦΨ(ξ). We also use the next
Fourier inversion formula, which is a generalization of Fujikoshi et al. (1982): for E ∼ N(µ,Σ)

and any polynomials h(·) and g(·),

F−1[h(−is)E[g(E) exp(is′E)]]E=ξ = h

(
∂

∂ξ

)
g(ξ)φµ,Σ(ξ), (18)

where φµ,Σ(ξ) is the density function of N(µ,Σ) and ∂/∂ξ′ = (∂/∂ξ1, · · · , ∂/∂ξG1+K1). The
conclusion follows by applying this formula.

A.2. Proof of Theorem 1. To derive the asymptotic expansion of the null distribution of the
large-K t-ratio, we first expand each term of Ψ̂ in (9). Let E1 and E2 such that

1

K
(V, 0)′PZ(V, 0) =

(
Ω 0

0 0

)
+

1√
K
E1,

1

n−K
(V, 0)′MZ(V, 0) =

(
Ω 0

0 0

)
+

1√
n−K

E2.

Using (14) and a (1 +G1 +K1)× (G1 +K1) choice matrix J2 = (0, IG1+K1)′, we have

Q̂ = Q+
1√
n

[
1√
n
D′2Z

′(V2, 0) +
1√
n

(
V ′2

0′

)
ZD2

+
√
cJ ′2E1J2 +

√
cc∗J

′
2E2J2 − λ(1)

(
Ω22 0

0 0

)]
+Op(n

−1),
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and thus Q̂−1 is expanded as

Q̂−1 = Q−1 − 1√
n
Q−1BQ−1 +Op(n

−1),

where

B =
1√
n
D′2Z

′(V2, 0) +
1√
n

(V2, 0)′ZD2 +
√
cJ ′2E1J2 +

√
cc∗J

′
2E2J2 − λ(1)

(
Ω22 0

0 0

)
.

Also, note that

1

n−K
b̂′Y ′MZY b̂

=

{
b− 1√

n

(
0

e
(0)
β

)
+Op(n

−1)

}′

×

{
Ω +

1√
n

[√
n−K
1− c

(
1

n−K
V ′MZV − Ω

)]}{
b− 1√

n

(
0

e
(0)
β

)
+Op(n

−1)

}

= σ2 +
1√
n

[
−2(0, e

(0)′
β )Ωb+

√
n−K
1− c

b′
(

1

n−K
V ′MZV − Ω

)
b

]
+Op(n

−1),

where b = (1,−β′)′ and e(0)
β is the first G1 elements of e(0) in (15). Similarly,

1

(n−K)2
Y ′MZY b̂b̂

′Y ′MZY

= Ωbb′Ω +
1√
n

[
−Ωb(0, e

(0)′
β )Ω +

√
n−K
1− c

Ωbb′
(

1

n−K
V ′MZV − Ω

)

−Ω

(
0

e
(0)
β

)
b′Ω +

√
n−K
1− c

(
1

n−K
V ′MZV − Ω

)
bb′Ω

]
+Op(n

−1).

Combining these terms, we have

Ψ̂ = Ψ +
1√
n

Ψ(1) +Op(n
−1),
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where

Ψ(1) = Q−1

[
−2e(0)′q2σ

2 +

√
n−K
1− c

(
1

n−K
u′MZu− σ2

)]

−Q−1BQ−1σ2 + (c∗ + κη)Q−1AQ−1 − (c∗ + κη)Q−1BQ−1

[(
σ2Ω22 0

0 0

)
− q2q

′
2σ

4

]
Q−1

−(c∗ + κη)Q−1

[(
σ2Ω22 0

0 0

)
− q2q

′
2σ

4

]
Q−1BQ−1 + κ∗ηQ−1

[(
σ2Ω22 0

0 0

)
− q2q

′
2σ

4

]
Q−1,

κ∗ =
1

3σ2

[
− 4

n

n∑
i=1

u3
iw
′
2ie

(0) − 4

n

n∑
i=1

u3
i z
′
iD2e

(0)

+
√
n

(
1

n

n∑
i=1

u4
i − E[u4

i ]

)
− 2E[u4

i ]

σ2

√
n−K
1− c

(
1

n−K
u′MZu− σ2

)]
,

A = −2

(
Ω22 0

0 0

)
e(0)′q2σ

2 +

√
n−K
1− c

(
Ω22 0

0 0

)(
1

n−K
u′MZu− σ2

)

+

√
1

1− c
J ′2E2J2σ

2 + q2σ
2e(0)′

(
Ω22 0

0 0

)

−q2

√
n−K
1− c

(
1

n−K
u′MZ(V2, 0)− q′2σ2

)
σ2 +

(
Ω22 0

0 0

)
e(0)q′2σ

2

−
√
n−K
1− c

(
1

n−K
(V2, 0)′MZu− q2σ

2

)
q′2σ

2.

Under H0, the large-K t-ratio (10) is approximated as

tK =
ê√
Ψj

√
Ψj

Ψ̂j

=
ι′
(
e(0) + 1√

n
e(1) +Op(n

−1)
)

√
Ψj

(
1− 1

2
√
n

Ψ
(1)
j

Ψj
+Op(n

−1)

)

= T +
1√
n
t(1) +Op(n

−1), (19)

where

T =
ι′e(0)√

Ψj

, t(1) =
ι′e(1)√

Ψj

− 1

2

Ψ
(1)
j

Ψj
T .

The first-order term T is distributed as N(0, 1). We derive an asymptotic expansion of the dis-
tribution function of the large-K t-ratio by inverting the characteristic function up to O(n−1/2):

E[exp(isT )] +
1√
n
E[isE[t(1)|T ] exp(isT )] +O(n−1).

By using Kunitomo and Matsushita (2009, Lemma 4.3) and the fact that any odd moments of
the elliptically contoured distribution is 0, the expectation of t(1) conditional on T is calculated
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as

E[t(1)|T ] = − 1√
Ψj

[
(ι′Ψq2)T 2 − a

1− c
σ2ι′Q−1q2

]
− 1

2

[
− 4√

Ψj

(ι′Ψq2)T 2

]

=
1√
Ψj

[
T 2ι′Ψ +

a

1− c
σ2ι′Q−1

]
q2 +Op(n

−1/2),

where the first equality follows from Lemma 1. The probability P{tK ≤ ξ} is approximated to
the order n−1/2 using the same formula as (18).

The validity of the expansion is given by similar arguments to those in Kunitomo and Mat-
sushita (2009) and in Fujikoshi et al. (1982). The random variables that appear in our analyses
are x1 = 1√

n
D′2Z

′u, x2 = 1√
n
D′2Z

′W2, x3 =
√
K(u′PZu/K − σ2), x4 =

√
n−K(u′MZu/(n −

K) − σ2), x5 = 1√
K
W ′2PZu, x6 = 1√

n−KW
′
2MZu, x7 =

√
K(W ′2PZW2/K − C2), and x8 =

√
n−K(W ′2MZW2/(n − K) − C2), where C2 = E[w2iw

′
2i]. We use the space Jn where each

element of xi (for i = 1, . . . , 8) is in the interval (−2c
√

log n, 2c
√

log n) and c is a standard devi-
ation of each random variable. Then, if E[||vi||8] <∞, we can take a positive constant d which
satisfies

P{||xj || >
√

Λn log n} ≤ d

n(log n)2
,

where Λn as the maximum of the characteristic roots of the covariance matrix of xj (j = 1, . . . , 8)

(Bhattacharya and Ghosh, 1978). Then, P (Jn) = 1−O(n−1), which can be proved in the same
way as in Anderson (1974). We see that each element of e(l) and t(l) is a homogeneous polynomial
of degree l + 1 in the elements of xj . The remainder terms of (16) and (19) are of the order
O(n−1) uniformly in Jn. Therefore, the analysis subsequent to (B.3) in Fujikoshi et al. (1982)
is applicable.

Lemma 1. Based on the setup and notation of the proof of Theorem 1, it holds E[Ψ
(1)
j |T ] =

−4
√

Ψj(q
′
2Ψι).

Proof of Lemma 1. Decompose

Ψ
(1)
j = ι′

{
Q−1

[
−2e(0)′q2σ

2 +

√
n−K
1− c

(
1

n−K
u′MZu− σ2

)]
+ (c∗ + κη)Q−1AQ−1

−Q−1BQ−1σ2 − (c∗ + κη)Q−1BQ−1

[(
σ2Ω22 0

0 0

)
− q2q

′
2σ

4

]
Q−1

− (c∗ + κη)Q−1

[(
σ2Ω22 0

0 0

)
− q2q

′
2σ

4

]
Q−1BQ−1 + κ∗ηQ−1

[(
σ2Ω22 0

0 0

)
− q2q

′
2σ

4

]
Q−1

}
ι

≡ Ψ
(1)
j1 + Ψ

(1)
j2 + Ψ

(1)
j3 + Ψ

(1)
j4 + Ψ

(1)
j5 + Ψ

(1)
j6 .

For Ψ
(1)
j6 , we have E[Ψ

(1)
j6 |T ] = 0. For Ψ

(1)
j1 ,

E[Ψ
(1)
j1 |T ] = − 2σ2√

Ψj

(ι′Q−1ι)(ι′E[e(0)e(0)′]q2)T = − 2σ2√
Ψj

(ι′Q−1ι)(ι′Ψq2)T . (20)
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For Ψ
(1)
j2 , note that

ι′Q−1AQ−1ι = ι′Q−1

[
−2

(
σ2Ω22 0

0 0

)
e(0)′q2 +

√
n−K
1− c

(
Ω22 0

0 0

)(
1

n−K
u′MZu− σ2

)

+

√
1

1− c
J ′2E2J2σ

2 + q2e
(0)′

(
σ2Ω22 0

0 0

)

−q2

√
n−K
1− c

(
1

n−K
u′MZ(V2, 0)− q′2σ2

)
σ2 +

(
σ2Ω22 0

0 0

)
e(0)q′2

−
√
n−K
1− c

(
1

n−K
(V2, 0)′MZu− q2σ

2

)
q′2σ

2

]
Q−1ι

≡ Aj1 + · · ·+Aj7.

Observe that E[Aj2 +Aj3 +Aj5 +Aj7|T ] = 0, and

E[Aj1|T ] = − 2√
Ψj

(
ι′Q−1

(
σ2Ω22 0

0 0

)
Q−1ι

)
(ι′Ψq2)T ,

E[Aj4 +Aj6|T ] =
2√
Ψj

(
ι′Q−1

(
σ2Ω22 0

0 0

)
Ψι

)
(ι′Q−1σ2q2)T .

Combining these results,

E[Ψ
(1)
j2 |T ] = −(c∗ + κη)

2√
Ψj

(
ι′Q−1

(
σ2Ω22 0

0 0

)
Q−1ι

)
(ι′Ψq2)T

+(c∗ + κη)
2√
Ψj

(
ι′Q−1

(
σ2Ω22 0

0 0

)
Ψι

)
(ι′Q−1σ2q2)T . (21)

For Ψ
(1)
j3 + Ψ

(1)
j4 + Ψ

(1)
j5 , we have

E[Ψ
(1)
j3 + Ψ

(1)
j4 + Ψ

(1)
j5 |T ]

= E[ι′Q−1BQ−1ισ2 − 2ι′Q−1BΨι|T ]

=
2√
Ψj

(ι′Ψι)(q′2Q
−1σ2ι)− 2√

Ψj

(ι′Ψι)(q′2Ψι)

− 2√
Ψj

(
ι′Q−1

[
Q+ (c∗ + κη)

{(
σ2Ω22 0

0 0

)
− σ4q2q

′
2

}]
Ψι

)
(q′2Q

−1σ2ι)

= −(c∗ + κη)
2√
Ψj

(
ι′Q−1

(
σ2Ω22 0

0 0

)
Ψι

)
(ι′Q−1σ2q2)T

+(c∗ + κη)
2√
Ψj

(q′2Q
−1σ2ι)2(q′2Ψι)T , (22)

where we have used the fact that E[w2iw
′
2i] =

(
Ω22 0

0 0

)
− σ2q2q

′
2.

Combining (20)-(22), the conclusion follows.
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A.3. Proof of Theorem 3. Under H1n, the large-K t-ratio can be written as

tK =
1√
Ψ̂j

ι′
√
n

(
β̂

γ̂

)
=

1√
Ψ̂j

ι′
√
n

(
β̂ − β
γ̂ − γ

)
+

ι′ζ√
Ψ̂j

=

(
T +

ι′ζ√
Ψj

)
+

1√
n

(
t(1) −

Ψ
(1)
j ι′ζ

2Ψj

√
Ψj

)
+Op(n

−1), (23)

where T in the first-order term is distributed as N(0, 1). Since the expectation of Ψ
(1)
j conditional

on T is calculated as E[Ψ
(1)
j |T ] = −4

√
Ψj(ι

′Ψq2)T +Op(n
−1/2) by Lemma 1, we have

E

[
t(1) −

Ψ
(1)
j ι′ζ

2Ψj

√
Ψj

∣∣∣∣∣ T∗ = T +
ι′ζ√
Ψj

]

=
1√
Ψj

[
T 2
∗ ι
′Ψ +

a

1− c
σ2ι′Q−1

]
q2 −

1√
Ψj

(ι′Ψq2)

(
ι′ζ√
Ψj

)2

+Op(n
−1/2). (24)

Then the probability P{tK ≤ τ} is approximated to the order O(n−1/2) using the inversion
formula (18):

P{tK < τ}

= Φζ(τ)− 1√
n

 1√
Ψj

{
τ2(ι′Ψ) +

a

1− c
σ2Q−1

}
q2 −

1√
Ψj

(ι′Ψq2)

(
ι′ζ√
Ψj

)2
φζ(τ) +O(n−1).

The result for the two-sided test is obtained by P{|tK | ≤ τ} = P{tK ≤ τ} − P{tK ≤ −τ}.

A.4. Proof of Theorems 4 and 5. We only present the proof for Theorem 5 since the proof
of Theorem 4 for the null distribution follows directly by setting ζ = 0.

By using (23), the adjusted t-ratio under H1n can be written as

tadjK = tK −
1√
n

1√
Ψ̂j

{
(ι′Ψ̂q̂2)t2K +

an

n−K
σ̂2ι′Q̂−1q̂2

}
+Op(n

−1)

=

(
T +

ι′ζ√
Ψj

)
+

1√
n

(
t(1) −

Ψ
(1)
j ι′ζ

2Ψj

√
Ψj

)

− 1√
n

1√
Ψj

(ι′Ψq2)

(
T +

ι′ζ√
Ψj

)2

− 1√
n

1√
Ψj

a

1− c
σ2ι′Q−1q2 +Op(n

−1),

where the first equality follows from I{t2K ≥ nε} = Op(n
−1) (because of the fact that t2K converges

to a non-central χ2 distribution under H1n). Thus, using (24) with a = 0, the expectation of the
O(n−1/2) term conditional on T∗ = T + ι′ζ√

Ψj
is calculated as

E

(t(1) −
Ψ

(1)
j ι′ζ

2Ψj

√
Ψj

)
− 1√

Ψj

(ι′Ψq2)

(
T +

ι′ζ√
Ψj

)2

− 1√
Ψj

a

1− c
σ2ι′Q−1q2

∣∣∣∣∣∣ T ∗


= − 1√
Ψj

(ι′Ψq2)

(
ι′ζ√
Ψj

)2

+Op(n
−1/2).
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The probability P{tadjK ≤ τ} is approximated to the order n−1/2 using the inversion formula (18):

P{tadjK ≤ τ} = Φζ(τ)− 1√
n

− 1√
Ψj

(ι′Ψq2)

(
ι′ζ√
Ψj

)2
φζ(τ) +O(n−1).

The result for the two-sided test is obtained by P{|tadjK | ≤ τ} = P{tadjK ≤ τ} − P{tadjK ≤ −τ}.
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Appendix B. Tables and figures

tLI tLIK tFK tadj,LIK tadj,FK
ρ δ2 K β < 0 β > 0 β < 0 β > 0 β < 0 β > 0 β < 0 β > 0 β < 0 β > 0
0.2 64 5 0.052 0.056 0.045 0.050 0.040 0.050 0.057 0.050 0.058 0.050

64 10 0.056 0.062 0.043 0.048 0.038 0.048 0.054 0.049 0.055 0.049
64 20 0.072 0.083 0.038 0.052 0.033 0.051 0.054 0.054 0.056 0.054

32 5 0.045 0.061 0.033 0.048 0.027 0.046 0.055 0.053 0.057 0.053
32 10 0.057 0.078 0.032 0.052 0.025 0.050 0.056 0.058 0.057 0.058
32 20 0.077 0.107 0.027 0.048 0.021 0.047 0.058 0.060 0.060 0.060

16 5 0.032 0.066 0.017 0.046 0.012 0.040 0.057 0.060 0.057 0.059
16 10 0.042 0.088 0.015 0.042 0.010 0.038 0.057 0.068 0.055 0.066
16 20 0.069 0.133 0.013 0.044 0.010 0.039 0.058 0.078 0.057 0.077

0.4 64 5 0.044 0.061 0.039 0.055 0.031 0.057 0.056 0.051 0.057 0.051
64 10 0.048 0.067 0.034 0.056 0.029 0.058 0.052 0.053 0.055 0.053
64 20 0.060 0.084 0.034 0.056 0.026 0.058 0.053 0.053 0.056 0.052

32 5 0.036 0.069 0.026 0.058 0.020 0.060 0.058 0.053 0.060 0.054
32 10 0.045 0.078 0.024 0.056 0.017 0.057 0.060 0.053 0.062 0.054
32 20 0.054 0.011 0.018 0.062 0.012 0.061 0.053 0.063 0.055 0.062

16 5 0.017 0.078 0.009 0.057 0.005 0.057 0.059 0.059 0.061 0.060
16 10 0.022 0.107 0.008 0.062 0.004 0.061 0.056 0.071 0.055 0.071
16 20 0.038 0.145 0.006 0.061 0.004 0.058 0.052 0.079 0.051 0.076

Table 1. Null rejection frequencies of one-sided large-K t-tests at 5% significance
level (homoskedastic case)
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ρ δ2 K tLI tLIK tFK tadj,LIK tadj,FK
0.2 64 5 0.053 0.045 0.045 0.052 0.053

64 10 0.063 0.045 0.044 0.053 0.053
64 20 0.082 0.039 0.038 0.050 0.051

32 5 0.053 0.038 0.037 0.054 0.055
32 10 0.070 0.035 0.033 0.057 0.059
32 20 0.105 0.033 0.032 0.058 0.061

16 5 0.044 0.026 0.024 0.055 0.059
16 10 0.061 0.024 0.022 0.058 0.059
16 20 0.108 0.022 0.020 0.068 0.068

0.4 64 5 0.051 0.044 0.045 0.050 0.050
64 10 0.059 0.044 0.044 0.051 0.053
64 20 0.079 0.041 0.042 0.050 0.053

32 5 0.050 0.036 0.036 0.051 0.054
32 10 0.065 0.037 0.037 0.054 0.058
32 20 0.096 0.038 0.038 0.058 0.062

16 5 0.047 0.034 0.033 0.058 0.063
16 10 0.072 0.035 0.034 0.064 0.067
16 20 0.110 0.035 0.033 0.067 0.068

Table 2. Null rejection frequencies of two-sided large-K t-tests at 5% significance
level (homoskedastic case)
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Figure 1. Power curves of two-sided tests: n = 100,K = 20, ρ = 0.2, δ2 = 16
(homoskedastic case)

Figure 2. Power curves of two-sided tests: n = 100,K = 20, ρ = 0.4, δ2 = 16
(homoskedastic case)
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tHLIK tHFK tadj,HLIK tadj,HFK
ρ δ2 K β < 0 β > 0 β < 0 β > 0 β < 0 β > 0 β < 0 β > 0
0.4 64 5 0.039 0.059 0.032 0.062 0.054 0.054 0.055 0.054

64 10 0.030 0.062 0.023 0.065 0.050 0.058 0.052 0.058
64 20 0.018 0.062 0.013 0.065 0.036 0.058 0.037 0.059

32 5 0.019 0.062 0.013 0.065 0.050 0.059 0.051 0.059
32 10 0.009 0.061 0.007 0.064 0.034 0.059 0.035 0.060
32 20 0.003 0.069 0.002 0.071 0.018 0.069 0.018 0.069

16 5 0.004 0.060 0.003 0.062 0.028 0.064 0.027 0.064
16 10 0.003 0.063 0.001 0.062 0.017 0.070 0.017 0.070
16 20 0.000 0.066 0.000 0.065 0.005 0.081 0.005 0.081

Table 3. Null rejection frequencies of one-sided large-K t-tests at 5% significance
level (heteroskedastic case)

ρ δ2 K tHLIK tHFK tadj,HLIK tadj,HFK
0.4 64 5 0.048 0.051 0.054 0.055

64 10 0.044 0.050 0.050 0.052
64 20 0.040 0.048 0.044 0.045

32 5 0.041 0.045 0.053 0.055
32 10 0.038 0.043 0.045 0.047
32 20 0.043 0.047 0.046 0.047

16 5 0.034 0.035 0.045 0.047
16 10 0.036 0.036 0.044 0.045
16 20 0.040 0.039 0.050 0.051

Table 4. Null rejection frequencies of two-sided large-K t-tests at 5% significance
level (heteroskedastic case)

22



References

[1] Anderson, T. W. (1974) An asymptotic expansion of the distribution of the limited information maximum

likelihood estimate of a coefficient in a simultaneous equation system, Journal of the American Statistical

Association, 69, 565-573.

[2] Anderson, T. W. (2003) An Introduction to Multivariate Statistical Analysis, 3rd edition, John-Wiley.

[3] Anderson, T. W., Kunitomo, N. and Y. Matsushita (2010) On the asymptotic optimality of the LIML

estimator with possibly many instruments, Journal of Econometrics, 157, 191-204.

[4] Anderson, T. W., Kunitomo, N. and Y. Matsushita (2011) On finite sample properties of alternative estima-

tors of coefficients in a structural equation with many instruments, Journal of Econometrics, 165, 58-69.

[5] Anderson, T. W., Kunitomo, N. and T. Sawa (1982) Evaluation of the distribution function of the limited

information maximum likelihood estimator, Econometrica, 50, 1009-1027.

[6] Angrist, J. D. and A. Krueger (1991) Does compulsory school attendance affect schooling and earnings,

Quarterly Journal of Economics, 106, 979-1014.

[7] Bekker, P. A. (1994) Alternative approximations to the distributions of instrumental variables estimators,

Econometrica, 63, 657-681.

[8] Chioda, L. and M. Jansson (2009) Optimal invariant inference when the number of instruments is large,

Econometric Theory, 25, 793-805.

[9] Fujikoshi, Y., Morimune, K., Kunitomo, N. and M. Taniguchi (1982) Asymptotic expansions of the dis-

tributions of the estimates of coefficients in a simultaneous equation system, Journal of Econometrics, 18,

191-205.

[10] Fuller, W. A. (1977) Some properties of a modification of the limited information estimator, Econometrica,

45, 939-954.

[11] Hahn, J., Hausman, J. A. and G. M. Kuersteiner (2004) Estimation with weak instruments: accuracy of

higher-order bias and MSE approximations, Econometrics Journal, 7, 272-306.

[12] Hansen, C., Hausman, J. A. and W. K. Newey (2008) Estimation with many instrumental variables, Journal

of Business & Economic Statistics, 26, 398-422.

[13] Hausman, J. A., Newey, W. K., Woutersen, T., Chao, J. and N. R. Swanson (2012) Instrumental variable

estimation with heteroskedasticity and many instruments, Quantitative Economics, 3, 211-255.

[14] Kunitomo, N. (1980) Asymptotic expansions of distributions of estimators in a linear functional relationship

and simultaneous equations, Journal of the American Statistical Association, 75, 693-700.

[15] Kunitomo, N. (1982) Asymptotic efficiency and higher order efficiency of the limited information maximum

likelihood estimator in large econometric models, Technical Report No. 365, Institute for Mathematical

Studies in the Social Sciences, Stanford University.

[16] Kunitomo, N. and Y. Matsushita (2009) Asymptotic expansions of the distributions of semi-parametric

estimators in a linear simultaneous equations system, Journal of Multivariate Analysis, 100, 1727-1751.

[17] Morimune, K. (1983) Approximate distributions of k-class estimators when the degree of overidentification

is large compared with sample size, Econometrica, 51, 821-841.

[18] Morimune, K. (1989) t test in a structural equation, Econometrica, 57, 1341-1360.

[19] Mukerjee, R. (1994) Comparison of tests in their original forms, Sankhyā, A 45, 118-127.
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